Abstract

In this article, a method used for tip-position coordinate control of a three-degree-of-freedom (DOF) soft actuator is proposed.In general, the behavior of pneumatic soft actuators is simple. However, the actuator, which consists of three artificial muscles, is capable of more complex motions compared to conventional soft actuators. By designing a model and control system that can handle multiple input patterns, various motions are possible. In addition, a machine learning technique called <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">multioutput support vector regression</i> ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M-SVR</i> ) is used as a method to compensate for the complexity of multiple-input, multiple-output systems. First, a model that can be used to design a control system is offered. Then, a control system is designed, using the recommended model and machine learning approaches. Furthermore, the effectiveness of the proposed system is verified by experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.