Abstract
Clay-based mortars are susceptible to water intake and exhibit low mechanical strength, presenting challenges in their application within the construction sector. This research addresses these vulnerabilities by investigating the combination of alkali activators with waterproofing agents, specifically a nano-clay and an acrylic emulsion, to enhance the properties of clay mortars. Alkali-activated materials are known for their superior mechanical properties and sustainable potential, especially when derived from low-cost by-products. Recent studies have focused on alkali activation using clays and soils as precursors to improve their physical and mechanical properties while increasing durability. However, the high absorbency of these mortars remains a concern, as it can lead to matrix degradation. Therefore, to address these problems, this research studied the combination of a highly alkaline activator (potassium metasilicate) with hydrophobic agents, such as a nano-clay and an acrylic emulsion, using two different clayey soils. The results indicated that potassium metasilicate (PO) enhanced the mechanical properties and stability for both aluminosilicate systems, while nano-clay (PONC) significantly reduced the capillary absorption through time, especially in A2 systems. The addition of acrylic emulsion (POD) proved highly effective in both systems, significantly improving durability. By integrating these agents, the mortar systems were protected against water intake, while durable construction materials were formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.