Abstract

Tendinopathy is a common chronic tendon disease relating to inflammation and degeneration in an orthopaedic area. With high morbidity, limited self-repairing capacity and, most importantly, no definitive treatments, tendinopathy still influences patients' life quality negatively. Tendon-derived stem cells (TDSCs), as primary precursor cells of tendon cells, play an essential role in both the development of tendinopathy, and functional and structural restoration after tendinopathy. Thus, a method that can in vitro mimic the in vivo differentiation of TDSCs into tendon cells would be useful. Here, the present protocol describes a method based on a three-dimensional (3D) uniaxial stretching system to stimulate the TDSCs to differentiate into tendon-like tissues. There are seven stages of the present protocol: isolation of mice TDSCs, culture and expansion of mice TDSCs, preparation of stimulation culture medium for cell sheet formation, cell sheet formation by culturing in stimulation medium, preparation of 3D tendon stem cell construct, assembly of the uniaxial-stretching mechanical stimulation complex, and evaluation of the mechanical stimulated in vitro tendon-like tissue. The effectiveness was demonstrated by histology. The entire procedure takes less than 3 weeks. To promote extracellular matrix deposition, 4.4 mg/mL ascorbic acid was used in the stimulation culture medium. A separated chamber with a linear motor provides accurate mechanical loading and is portable and easily adjusted, which is applied for the bioreactor. The loading regime in the present protocol was 6% strain, 0.25 Hz, 8 h, followed by 16 h rest for 6 days. This protocol could mimic cell differentiation in the tendon, which is helpful for the investigation of the pathological process of tendinopathy. Moreover, the tendon-like tissue is potentially used to promote tendon healing in tendon injury as an engineered autologous graft. To sum up, the present protocol is simple, economic, reproducible and valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.