Abstract

BackgroundSegmenting the population into homogenous groups according to their healthcare needs may help to understand the population’s demand for healthcare services and thus support health systems to properly allocate healthcare resources and plan interventions. It may also help to reduce the fragmented provision of healthcare services. The aim of this study was to apply a data-driven utilisation-based cluster analysis to segment a defined population in the south of Germany.MethodsBased on claims data of one big German health insurance a two-stage clustering approach was applied to group the population into segments. A hierarchical method (Ward's linkage) was performed to determine the optimal number of clusters, followed by a k-means cluster analysis using age and healthcare utilisation data in 2019. The resulting segments were described in terms of their morbidity, costs and demographic characteristics.ResultsThe 126,046 patients were divided into six distinct population segments. Healthcare utilisation, morbidity and demographic characteristics differed significantly across the segments. The segment “High overall care use” comprised the smallest share of patients (2.03%) but accounted for 24.04% of total cost. The overall utilisation of services was higher than the population average. In contrast, the segment “Low overall care use” included 42.89% of the study population, accounting for 9.94% of total cost. Utilisation of services by patients in this segment was lower than population average.ConclusionPopulation segmentation offers the opportunity to identify patient groups with similar healthcare utilisation patterns, patient demographics and morbidity. Thereby, healthcare services could be tailored for groups of patients with similar healthcare needs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.