Abstract

In this paper, a practical approach to trajectory design for asteroid exploration missions with CubeSats is presented. When applied trajectories are sought, operative concerns and uncertainties affecting the spacecraft dynamics must be considered during the preliminary design process. Otherwise, trajectories that are possible on paper might become infeasible when real-world constraints are considered. The risk of such eventualities leads to the need to extend the trajectory design to focus on the uncertainties affecting the dynamics and on the operative constraints derived by ground operations. This is especially true when targeting highly perturbed environments such as small bodies with low-cost solutions such as CubeSats, whose capabilities in deep space are still unknown. The case study presented is the Milani CubeSat, which will be launched in 2024 with Hera in the frame of the AIDA mission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.