Abstract

We present the results of the RAPET (reaction under autogenic pressure at elevated temperatures) dissociation of CoZr(2)(acac)(2)(O(i)Pr)(8) at 700 degrees C in a closed Swagelok cell under an applied magnetic field of 10 T. It produces a mixture of carbon-coated and noncoated metastable ZrO(2) nanoparticles, bare metallic Co nanoparticles, and bare carbon. The same reaction in the absence of a magnetic field produces spherical Co and ZrO(2) particles in sizes ranging from 11 to 16 nm and exhibiting, at room temperature, metastable phases: fcc for cobalt and a tetragonal phase for zirconia. The metastable phases of Co and ZrO(2) are manifested because of a carbon shell of approximately 4 nm thickness anchored to their surfaces. The effect of an applied magnetic field to synthesize morphologically different, but structurally the same, products is the key topic of the present paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call