Abstract
Electrical impedance tomography (EIT) may have potential to overcome existing limitations in stroke differentiation, enabling low-cost, rapid, and mobile data collection. Combining bioimpedance measurement technologies such as EIT with machine learning classifiers to support decision-making can avoid commonly faced reconstruction challenges due to the nonlinear and ill-posed nature of EIT imaging. Therefore, in this work, we advance this field through a study integrating realistic head models with clinically relevant test scenarios, and a robust architecture consisting of nested cross-validation and principal component analysis. Specifically, realistic head models are designed which incorporate the highly conductive layers of cerebrospinal fluid in the subarachnoid space and ventricles. In total, 135 unique models are created to represent a large patient population, with normal, haemorrhagic, and ischemic brains. Simulated EIT voltage data generated from these models are used to assess the classification performance of support vector machines. Parameters explored include driving frequency, signal-to-noise ratio, kernel function, and composition of binary classes. Classifier accuracy at 60 dB signal-to-noise ratio, reported as mean and standard deviation, are (79.92% ± 10.82%) for lesion differentiation, (74.78% ± 3.79%) for lesion detection, (77.49% ± 15.90%) for bleed detection, and (60.31% ± 3.98%) for ischemia detection (after ruling out bleed). The results for each method were obtained with statistics from 3 independent runs with 17,280 observations, polynomial kernel functions, and feature reduction of 76% by PCA (from 208 to 50 features). While results of this study show promise for stroke differentiation using EIT data, our findings indicate that the achievable accuracy is highly dependent on the classification scenario and application-specific classifiers may be necessary to achieve acceptable accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.