Abstract

Although the lithium-sulfur (Li-S) battery has a theoretical capacity of up to 1675 mA h g−1, its practical application is limited owing to some problems, such as the shuttle effect of soluble lithium polysulfides (LiPSs) and the growth of Li dendrites. It has been verified that some transition metal compounds exhibit strong polarity, good chemical adsorption and high electrocatalytic activities, which are beneficial for the rapid conversion of intermediate product in order to effectively inhibit the “shuttle effect”. Remarkably, being different from other metal compounds, it is a significant characteristic that both metal and boron atoms of transition metal borides (TMBs) can bind to LiPSs, which have shown great potential in recent years. Here, for the first time, almost all existing studies on TMBs employed in Li-S cells are comprehensively summarized. We firstly clarify special structures and electronic features of metal borides to show their great potential, and then existing strategies to improve the electrochemical properties of TMBs are summarized and discussed in the focus sections, such as carbon-matrix construction, morphology control, heteroatomic doping, heterostructure formation, phase engineering, preparation techniques. Finally, the remaining challenges and perspectives are proposed to point out a direction for realizing high-energy and long-life Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.