Abstract

An unstructured hybrid grid method is discussed for its capability to compute three-dimensional compressible viscous flows of complex geometry. A hybrid of prismatic and tetrahedral grids is used to accurately resolve the wall boundary layers for high-Reynolds number viscous flows. The Navier-Stokes equations for compressible flows are solved by a finite volume, cell-vertex scheme. The LU-SGS implicit time integration method is used to reduce the computational time for very fine grids in boundary layer regions. Two kinds of one-equation turbulence models are evaluated here for their accuracy. The method is applied to computations of transonic flows around the ONERA M5 airplane and ONERA M6 wing, and supersonic shock/boundary layer interacting flows inside a scramjet inlet to validate the accuracy and efficiency of the method

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.