Abstract

ABSTRACT In solids, external stress induces the Peach-Koehler force, which drives dislocations to move. Similarly, in liquid crystals, an external angular stress creates an analogous force, which drives disclinations to move. In this work, we develop a method to calculate the relevant angular stress either analytically or numerically, and hence to determine the force on a disclination. We demonstrate this method by applying the Peach-Koehler force theory to four problems: (a) Single disclination in a liquid crystal cell between two uniform in-plane alignments perpendicular to each other. (b) Array of disclinations in a liquid crystal cell with patterned substrates. (c) Pair of disclinations in a long capillary tube with homeotropic anchoring. (d) Radial hedgehog or disclination loop inside a sphere with homeotropic anchoring, and its response to an applied magnetic field. In all of these problems, the Peach-Koehler force theory predicts the equilibrium defect structure, and the predictions are consistent with the results of minimising the total free energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.