Abstract

ABSTRACTIn this paper, we establish coincidence-like results in the case when the values of the correspondences are not convex. To do this, we define new type of correspondences, namely, properly quasi-convex-like correspondences. Further, we apply the obtained theorems to solve equilibrium problems and to establish a minimax inequality. In the last part of the paper, we study the existence of solutions for generalized vector variational relation problems. Our analysis is based on the applications of the KKM principle. We establish existence theorems involving new hypothesis and we improve the results of some recent papers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.