Abstract
The hybrid finite element analysis (Hybrid FEA) method is based on combining conventional finite element analysis (FEA) with energy finite element analysis (EFEA) for expediting the FEA computations when very dense models are needed. The difficulty in using conventional FEA at higher frequencies originates from requiring a very large number of elements in order to capture the flexible wavelength of the panel members which are present in a structure. In the Hybrid FEA the conventional FEA model is modified by de-activating the bending behavior of the flexible panels in the FEA computations and introducing instead a large number of dynamic impedance elements for representing the omitted bending behavior. The excitation is considered to be applied on the conventional FEA model and the vibration analysis is conducted. The power flow through the dynamic impedance elements is computed and applied as excitation to the EFEA model of the flexible panels. The EFEA analysis computes the vibration of the flexible panels. In the past, the Hybrid FEA has been utilized successfully for evaluating the vibration is production automotive and rotorcraft structures. A brief theoretical background will be reviewed, the practical aspects of the method will be discussed, and results from previous correlation studies will be presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.