Abstract

This paper proposes an innovative genetic algorithm (GA) approach to solve the thermal unit commitment (UC) problem in power generation industry through a constraint satisfaction technique. Due to a large variety of constraints to be satisfied, the solution space of the UC problem is highly nonconvex, and therefore the UC problem can not be solved efficiently by the standard GA. To effectively deal with the constraints of the problem and greatly reduce the search space of the GA, the minimum up- and down-time constraints are embedded in the binary strings that are coded to represent the on-off states of the generating units. The violations of the other constraints are handled by integrating penalty factors into the cost function. Numerical results on the practical Taiwan Power (Taipower) system of 38 thermal units over a 24-hour period show that the features of easy implementation, fast convergence, and highly near-optimal solution in solving the UC problem can be achieved by the proposed GA approach. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call