Abstract

The aim of this paper is to present the operating principle of a new resonant device, called the fault decoupling device (FDD), able to improve power quality in electrical distribution systems. In low-voltage networks, this device can be employed in order to mitigate voltage dips due to faults or large induction motor startup. Moreover, in the presence of distributed-generation (DG) units, the FDD allows one to obtain various benefits such as a reduction of the fault current in each node of the network and an increase in the voltage at the DG unit node. In order to show the performances of the FDD, analytical studies and computer simulations were carried out which took into account various working operation conditions. Finally, the prototype of the FDD as well as the preliminary experimental results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.