Abstract

The theory of stochastic differential equations is used in various fields of science and engineering. This paper deals with vector-valued stochastic integral equations. We show some applications of the presented theory to the problem of modelling RLC electrical circuits by noisy parameters. From practical point of view, the second-order RLC circuits are of major importance, as they are the building blocks of more complex physical systems. The mathematical models of such circuits lead to the second order differential equations. We construct stochastic models of the RLC circuit by replacing a coefficient in the deterministic system with a noisy one. In this paper we present the analytic solution of these equations using the Itô calculus and compute confidence intervals for the stochastic solutions. Numerical simulations in the examples are performed using Matlab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.