Abstract

An empirical dispersion correction is added to the range-separated hybrid density functionals HSE and HISS via parametrization versus a standard test bed of weakly bound complexes. The performance of the resulting HSE-D and HISS-D functionals is evaluated by calculating the equilibrium bond length, harmonic frequency, and dissociation energy for a number of rare gas dimers, and the lattice constants, band gaps, and sublimation energies of the rare gas solids. Both HSE-D and HISS-D are shown to provide accurate results for both molecules and extended systems, suggesting that the combination of a screened hybrid functional with an empirical dispersion correction provides an accurate, widely applicable method for use in solid-state and gas-phase electronic structure theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.