Abstract
Propolis use in medicine, pharmaceutical, cosmetic, and food industries is well known. This study aimed to investigate propolis' phyto-inhibitory and antimicrobial potential. Nine propolis samples obtained from distinct Romanian regions and characterized in terms of physical-chemical parameters, phenols and flavonoid contents, and antioxidant properties were prepared as dry propolis and aqueous extracts. The phyto-inhibitory effect was comparatively tested on different cereals: hexaploid bread wheat (Triticum aestivum), maize (Zea mays L.), oats (Avena sativa L.), and barley (Hordeum vulgare L.), while their in vitro antimicrobial activity was evaluated against bacterial and fungal strains specific to cereals: Bacillus subtilis, B. cereus, Proteus mirabilis, Fusarium oxysporum, Penicillium chrysogenum, and Aspergillus niger. All propolis samples showed a phyto-inhibitory effect on the cereals, the most pronounced being corn and oats. Propolis powder samples displayed a lower phyto-inhibitory activity than propolis extracts. Also, all tested products showed inhibitory efficacy against both bacteria and fungi. Furthermore, principal component analysis showed differences between the samples' phyto-inhibitory and antimicrobial properties depending on the geographical origin. Positive correlations were found between the polyphenols, flavonoid content, and antioxidant activity, respectively. These data support propolis' phyto-pharmaceutical potential related to its use in plant crop management as an alternative in ecological agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.