Abstract

This dissertation shows that the Coulomb operator and the long-range Coulomb operators can be resolved as a sum of products of one-particle functions. These resolutions provide a potent new route to tackle quantum chemical problems. Replacing electron repulsion terms in Schrodinger equations by the truncated resolutions yields the reduced-rank Schrodinger equations (RRSE). RRSEs are simpler than the original equations but yield energies with chemical accuracy even for low-rank approximations. Resolutions of the Coulomb operator factorize Coulomb matrix elements to Cholesky-like sums of products of auxiliary integrals. This factorization is the key to the reduction of computational cost of quantum chemical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call