Abstract

Techniques of rare event dynamics were reviewed, including string methods, which will be implemented with the biochemical simulation packages. The existing methods were applied to study biological systems with relevance to drug design and drug metabolism. The rare event dynamics simulations were performed to understand the kinetic and thermodynamic free energy information on the drug binding sites in the M2 proton channel, the free energy of insertion and association of membrane proteins and membrane active peptides. Results give a theoretical framework to interpret and reconcile existing and often conflicting opinions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.