Abstract

Quantum Dots (QD) provide unique opportunities to extend all the basic properties of heterostructure lasers and move further their applications. Practical fabrication of QD lasers became possible when techniques for self-organized growth allowed fabrication of dense and uniform arrays of narrow-gap nanodomains, coherently inserted in a semiconductor crystal matrix. Using of InAs QD lasers enabled significant improvement of device performance and extension of the spectral range on GaAs substrates to mainstream telecom wavelengths. Continuous wave 1.3 μm room-temperature output power of ~300 mW single mode for edge-emitters and of 1.2 mW multimode for vertical-cavity surface-emitting lasers are realized. Long operation lifetimes are manifested. The breakthrough become possible both due to development of self-organized growth and defect-reduction techniques in QD technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call