Abstract
In mathematics, physics, and engineering, orthogonal polynomials and special functions play a vital role in the development of numerical and analytical approaches. This field of study has received a lot of attention in recent decades, and it is gaining traction in current fields, including computational fluid dynamics, computational probability, data assimilation, statistics, numerical analysis, and image and signal processing. In this paper, using q-Hermite polynomials, we define a new subclass of bi-univalent functions. We then obtain a number of important results such as bonds for the initial coefficients of |a2|, |a3|, and |a4|, results related to Fekete–Szegö functional, and the upper bounds of the second Hankel determinant for our defined functions class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.