Abstract
In this paper, a link between polymatroid theory and locally repairable codes (LRCs) is established. The codes considered here are completely general in that they are subsets of An, where A is an arbitrary finite set. Three classes of LRCs are considered, both with and without availability, and for both information-symbol and all-symbol locality. The parameters and classes of LRCs are generalized to polymatroids, and a generalized Singelton bound on the parameters for these three classes of polymatroids and LRCs is given. This result generalizes the earlier Singleton-type bounds given for LRCs. Codes achieving these bounds are coined perfect, as opposed to the more common term optimal used earlier, since they might not always exist. Finally, new constructions of perfect linear LRCs are derived from gammoids, which are a special class of matroids. Matroids, for their part, form a subclass of polymatroids and have proven useful in analyzing and constructing linear LRCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.