Abstract

The number of ways to distribute r identical objects into n identical boxes can usually be obtained by a method of generating function or by a recursive formula. In this paper, for another approach, it is shown that we can obtain this number by using generalization of Polya’s theorem. From this, we can also find the number of partitions of integer n as a sum of k positive integers. Computing for the results is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.