Abstract

It is shown a mathematical model of a solar box cooker with multi-step inner reflector and the numerical results for two applications has been analyzed. These applications are 1. Numerical simulation of operation of solar box cooker with multi-step inner reflector in Tanta, Egypt and 2. Numerical simulation of solar box cooker with multi-step inner reflector for 10 hours of operation. In the case 1, is analyzed a solar box cooker constructed and evaluated in Tanta, Egypt [1]. The experimental results that was obtained are compared with the numerical results that was obtained for the mathematical model. The case 2, is an evaluation of numerical results that was obtained for the operation of 10 hours for solar box cooker constructed in the Laboratorio de Ingenieri´a Te´rmica e Hidra´ulica Aplicada (LABINTHAP) in Me´xico City. [4] The solar box cooker is integrated by a covert that was made with double glass, this is use with two purposes, reduce the loss heat convection with outer and to generated the greenhouse effect with inner of cooker. In the inner of cooker there are a mirrors arrangement in inclined position (inner reflectors) placed in angles of 30°, 45° and 75°, these helped to reflex the solar rays in direction to the cook recipient. The recipient also received the solar rays in the upper part (lid). The mathematical model that was obtained from energetic analysis, is formed for five differential equations system no linear and the fourth Runge-Kutta method is used to resolve it. The numerical solution of the equations system is obtained with a computational software in C++. This work is a contribution to the application of numerical methods and computational for development of the solar energy used in thermal conversion equipments. The use of these techniques to solve the mathematical model is important to contribute in the evaluation and design of solar box cookers with multi-step inner reflector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.