Abstract
In this study, to power comparison test, different univariate normality testing procedures are compared by using new algorithm. Different univariate and multivariate test are also analyzed here. And also review efficient algorithm for calculating the size corrected power of the test which can be used to compare the efficiency of the test. Also to test the randomness of generated random numbers. For this purpose, 1000 data sets with combinations of sample size n = 10, 20, 25, 30, 40, 50, 100, 200, 300 were generated from uniform distribution and tested by using different tests for randomness. The assessment of normality using statistical tests is sensitive to the sample size. Observed that with the increase of n, overall powers are increased but Shapiro Wilk (SW) test, Shapiro Francia (SF) test and Andeson Darling (AD) test are the most powerful test among other tests. Cramer-Von-Mises (CVM) test performs better than Pearson chi-square, Lilliefors test has better power than Jarque Bera (JB) Test. Jarque Bera (JB) Test is less powerful test among other tests.
Highlights
In parametric analysis assuming that population is normal
The assessment of normality using statistical tests is sensitive to the sample size
This study found that no single test has the most powerful in every situation
Summary
In parametric analysis assuming that population is normal. In this case, checking whether population is normal or not. Normality tests are used in different sectors. One application of normality tests is to the residuals from a linear regression model. If they are not normally distributed, the residuals should not be used in Z tests or in any other tests derived from the normal distribution, such as t tests, F tests and chi-squared tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.