Abstract

The success of therapeutic strategies within the fields of regenerative medicine, including tissue engineering, biomaterials engineering, and cell and tissue transplantation science, relies on researchers' understanding of the complex cellular microenvironments that occur within functional tissue. Microfabricated biomedical platforms provide tools for researchers to study cellular response to various stimuli with micro- and nanoscale spatial control. Initial studies utilizing relatively passive means of microenvironmental control have provided the fundamental knowledge required to begin to design microculture platforms that closely mimic these biological systems. In this review, we discuss second-generation cell and tissue culture platforms that utilize active components, borrowed from work in the development of microelectromechanical systems (MEMS). These microsystems offer the unprecedented opportunity to fabricate culture platforms designed to match tissue-specific growth parameters. In addition, the adoption of MEMS components opens up the door for future integration with the burgeoning field of microanalytical systems, providing analytical platforms that retain the sensitivity and resolution required within low-volume, microfluidic culture technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.