Abstract
In this article, we discuss the applications of martingale Hardy Orlicz–Lorentz–Karamata spaces in Fourier analysis. More precisely, we show that the partial sums of the Walsh–Fourier series converge to the function in norm if f∈LΦ,q,b\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f\\in L_{\\Phi ,q,b}$$\\end{document} with 1<p-≤p+<∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1<p_-\\le p_+<\\infty $$\\end{document}. The equivalence of maximal operators on martingale Hardy Orlicz–Lorentz–Karamata spaces is presented. The Fejér summability method is also studied and it is proved that the maximal Fejér operator is bounded from martingale Hardy Orlicz–Lorentz–Karamata spaces to Orlicz–Lorentz–Karamata spaces. As a consequence, we obtain conclusions about almost everywhere and norm convergence of Fejér means.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.