Abstract

Operating condition detection and fault diagnosis are very important for reliable operation of reciprocating compressors. Machine learning is one of the most powerful tools in this field. However, there are very few comprehensive reviews which summarize the current research of machine learning in monitoring reciprocating compressor operating condition and fault diagnosis. In this paper, the recent application of machine learning techniques in reciprocating compressor fault diagnosis is reviewed. The advantages and challenges in the detection process, based on three main monitoring parameters in practical applications, are discussed. Future research direction and development are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.