Abstract
Adaptive immunity is mediated by lymphocyte B and T cells, which respectively express a vast and diverse repertoire of B cell and T cell receptors and, in conjunction with peptide antigen presentation through major histocompatibility complexes (MHCs), can recognize and respond to pathogens and diseased cells. In recent years, advances in deep sequencing have led to a massive increase in the amount of adaptive immune receptor repertoire data; additionally, proteomics techniques have led to a wealth of data on peptide-MHC presentation. These large-scale data sets are now making it possible to train machine and deep learning models, which can be used to identify complex and high-dimensional patterns in immune repertoires. This article introduces adaptive immune repertoires and machine and deep learning related to biological sequence data and then summarizes the many applications in this field, which span from predicting the immunological status of a host to the antigen specificity of individual receptors and the engineering of immunotherapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual review of chemical and biomolecular engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.