Abstract

We use the geometric approach to the theory of Lie systems of differential equations in order to study dissipative Ermakov systems. We prove that there is a superposition rule for solutions of such equations. This fact enables us to express the general solution of a dissipative Milne–Pinney equation in terms of particular solutions of a system of second-order linear differential equations and a set of constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.