Abstract

Blind source separation (BSS) is a computational technique for revealing hidden factors that underlie sets of measurements or signals. The most basic statistical approach to BSS is Independent Component Analysis (ICA). It assumes a statistical model whereby the observed multivariate data are assumed to be linear or nonlinear mixtures of some unknown latent variables with nongaussian probability densities. The mixing coefficients are also unknown. By ICA, these latent variables can be found. This article gives the basics of linear ICA and reviews the efficient FastICA algorithm. Then, the paper lists recent applications of BSS and ICA on a variety of problem domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.