Abstract

Independent component analysis (ICA) has shown success in many applications. This paper investigates a new application of the ICA in endmember extraction and abundance quantification for hyperspectral imagery. An endmember is generally referred to as an idealized pure signature for a class whose presence is considered to be rare. When it occurs, it may not appear in large population. In this case, the commonly used principal components analysis may not be effective since endmembers usually contribute very little in statistics to data variance. In order to substantiate the author's findings, an ICA-based approach, called ICA-based abundance quantification algorithm (ICA-AQA) is developed. Three novelties result from the author's proposed ICA-AQA. First, unlike the commonly used least squares abundance-constrained linear spectral mixture analysis (ACLSMA) which is a second-order statistics-based method, the ICA-AQA is a high-order statistics-based technique. Second, due to the use of statistical independency, it is generally thought that the ICA cannot be implemented as a constrained method. The ICA-AQA shows otherwise. Third, in order for the ACLSMA to perform the abundance quantification, it requires an algorithm to find image endmembers first then followed by an abundance-constrained algorithm for quantification. As opposed to such a two-stage process, the ICA-AQA can accomplish endmember extraction and abundance quantification simultaneously in one-shot operation. Experimental results demonstrate that the ICA-AQA performs at least comparably to abundance-constrained methods

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.