Abstract

The development of powerful, simple and cost-effective signal amplifiers has significant implications for biological research and analysis. Hybridization chain reaction (HCR) has attracted increasing attention because of its enzyme-free, simple, and efficient amplification. In the HCR process, an initiator probe triggered a pair of metastable hairpins through a cross-opening process to propagate a chain reaction of hybridization events, yielding a long-nicked double-stranded nucleic acid structure. To achieve more noticeable signal amplification, nanomaterials, including graphene oxide, quantum dots, gold, silver, magnetic, and other nanoparticles, were integrated with HCR. Various types of colorimetric, fluorescence, plasmonic analyses or chemiluminescence optical sensing strategies incorporating nanomaterials have been developed to analyze various targets, such as nucleic acids, small biomolecules, proteins, and metal ions. This review summarized the recent advances of HCR technology pairing diverse nanomaterials in optical detection and discussed their challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call