Abstract

Temporal lobe epilepsy (TLE) is a prevalent neurodegenerative disease associated with various neuropsychiatric disorders and decreased quality of life. Much has been said about the use of fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG-PET), magnetic resonance imaging (MRI), and computed tomography in the qualitative assessment of TLE. However, research into the applications of quantitative measurements to treat and diagnose TLE is severely lacking in the literature. Global quantitative analysis using 18F-FDG-PET is a powerful tool in the metabolic assessment of TLE, and can more accurately identify seizure lateralization and the potential effects of treatment as compared with visual assessments and traditional biopsy region-of-interest quantification. Therefore, there is a pressing need to introduce these novel methods to the treatment of TLE. Although 18F-FDG-PET is most commonly used for visual assessments, qualitative analysis is associated with high levels of interobserver and intraobserver variability. Semiquantitative analysis using standardized uptake value is a more consistently accurate measure of the hypometabolic patterns seen in TLE patients. Novel methods of global quantitative analysis developed in our laboratory have the potential to improve TLE assessment by limiting variability and correcting for the partial volume effect. It is of great importance to adopt these techniques into the mainstream diagnosis and treatment of TLE in order to improve patient care worldwide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call