Abstract

This paper provides a comprehensive overview of the applications of game theory in deep learning. Today, deep learning is a fast-evolving area for research in the domain of artificial intelligence. Alternatively, game theory has been showing its multi-dimensional applications in the last few decades. The application of game theory to deep learning includes another dimension in research. Game theory helps to model or solve various deep learning-based problems. Existing research contributions demonstrate that game theory is a potential approach to improve results in deep learning models. The design of deep learning models often involves a game-theoretic approach. Most of the classification problems which popularly employ a deep learning approach can be seen as a Stackelberg game. Generative Adversarial Network (GAN) is a deep learning architecture that has gained popularity in solving complex computer vision problems. GANs have their roots in game theory. The training of the generators and discriminators in GANs is essentially a two-player zero-sum game that allows the model to learn complex functions. This paper will give researchers an extensive account of significant contributions which have taken place in deep learning using game-theoretic concepts thus, giving a clear insight, challenges, and future directions. The current study also details various real-time applications of existing literature, valuable datasets in the field, and the popularity of this research area in recent years of publications and citations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call