Abstract

Titanium-silicon dioxide (TiO2-SiO2) nanocomposite thin films have been synthesized by sol-gel process as a photoanode in dye-sensitized solar cells (DSSC). The photovoltaic performances, i.e. JSC, VOC, FF, and η were explored using I–V measurement. The effects of electrolyte type (iodolyte, PAN-based gel polymer: E1 and E2) and the preparation of photoanode (annealed temperature) on the performance of DSSC was significantly studied using factorial design methodology. It reveals that in factorial design, both main factors (electrolyte type and annealed temperature) and the interaction between these two factors were found statistically significant. It means that the effects of electrolyte type and annealed temperature, are the significant variables influencing the energy efficiency, as well as the two-factor interactions of electrolyte type and annealed temperature. The determination coefficient (R2) also in good alliance, which confirms that there exist a high association between these factors with the energy efficiency of DSSC. The optimum conditions of the energy efficiency occurs for a PAN-based gel polymer E2 when the photoanode was annealed at 350C, exhibits a highest energy efficiency of 1.5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call