Abstract

DNA microarrays have revolutionized gene expression studies and made large-scale parallel measurement of whole genome expression a feasible technique in model species where genomes are well characterized. Such studies are perfectly suited to unraveling the complex regulation and/or interaction of both genes and proteins likely involved in most physiological processes. Gene expression profiles are currently being used to identify genes underlying a range of physiological responses. Characterization of these genes will help to elucidate the pathways and processes regulating physiological processes. Expanding the use of DNA microarrays to non-model species that have been critical in elucidating certain physiological pathways will be valuable in determining the genes associated with these processes. Approaches that do not require complete genome information have recently been applied to “non-model” organisms. As whole genomes are sequenced for non-model organisms, the application of DNA microarrays to comparative physiology will expand even further. The recent development of protein microarrays will be critical in understanding the regulation of physiological processes not accounted for at the genomic level. Together, DNA and protein microarrays provide the most thorough and efficient method of understanding the molecular basis of physiological processes to date. In turn, classical physiological approaches will be vital in characterizing and verifying the function of the novel genes identified by microarray experiments. Ultimately, DNA and protein microarray expression profiles may be used to predict physiological responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call