Abstract

Electrochemical reactions typically involve electron transfer between an electrode and a dissolved chemical species at a solid-electrode/liquid-electrolyte interface. Three broad classes of electrochemical applications may be identified: (1) synthesis (or destruction), in which an applied potential is used to bring about a desired chemical oxidation or reduction reaction; (2) analysis, in which the current/potential characteristics of an electrode are used to determine the type and concentration of a species; and (3) power generation. These broad types of applications require stable, conductive, chemically robust, and economical electrodes. Diamond electrodes, fabricated by chemical vapor deposition, provide electrochemists with an entirely new type of carbon electrode that meets these requirements for a wide range of applications.The first reports of electrochemical studies using diamond were in the mid-1980s. During the past several years, the field has attracted increasing attention. This review summarizes the electrochemical properties of diamond that make it a unique electrode material and that distinguish it from conventional carbon electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.