Abstract

Numerous gel-free proteomics techniques have been reported over the past few years, introducing a move from proteins to peptides as bits of information in qualitative and quantitative proteome studies. Many shotgun proteomics techniques randomly sample thousands of peptides in a qualitative and quantitative manner but overlook the vast majority of protein modifications that are often crucial for proper protein structure and function. Peptide-based proteomic approaches have thus been developed to profile a diverse set of modifications including, but not at all limited, to phosphorylation, glycosylation and ubiquitination. Typical here is that each modification needs a specific, tailor-made analytical procedure. In this minireview, we discuss how one technique - diagonal reverse-phase chromatography - is applied to study two different types of protein modification: protein processing and protein N-glycosylation. Additionally, we discuss an activity-based proteome study in which purine-binding proteins were profiled by diagonal chromatography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call