Abstract

The statistical theory of signal detection and estimation has been applied to problems in large array seismology. Using this theory the structure of the optimum detector for a known signal and long observation time in additive Gaussian noise is derived. The array processing filter employed by the optimum detector is known as the maximum-likelihood filter. This filter also has the property that it provides a minimum-variance unbiased estimate for the input signal when it is not known, which is the same as the maximum-likelihood estimate of the signal if the noise is a multidimensional Gaussian process. A series of experiments was performed using data from the large aperture seismic array to determine the effectiveness of the maximum-likelihood method relative to simpler methods such as beam-forming. These results provide significant conclusions regarding the design and processing of data from large seismic arrays. The conventional and high-resolution estimation of the frequency-wavenumber spectrum of the background microseismic noise is also presented. The diffuse structure of this spectrum is shown to aid in explaining the relative performance of array processing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.