Abstract
The purpose of this article is to study deferred Cesrào statistical convergence of order (ξ, ω) associated with a modulus function involving the concept of difference sequences of fuzzy numbers. The study reveals that the statistical convergence of these newly formed sequence spaces behave well for ξ ≤ ω and convergence is not possible for ξ > ω. We also define p-deferred Cesàro summability and establish several interesting results. In addition, we provide some examples which explain the validity of the theoretical results and the effectiveness of constructed sequence spaces. Finally, with the help of MATLAB software, we examine that if the sequence of fuzzy numbers is bounded and deferred Cesàro statistical convergent of order (ξ, ω) in (Δ, F, f), then it need not be strongly p-deferred Cesàro summable of order (ξ, ω) in general for 0 < ξ ≤ ω ≤ 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.