Abstract

Recent developments in defect engineered InP-based structures, by grown-in intrinsic defects, are reviewed. We demonstrate that n-type doping or modulation doping in InP-based structures can be realized by an intentional introduction of P In antisites during off-stoichiometric growth of InP at low temperatures (LT) (∼260–350°C) by gas source molecular beam epitaxy (GS-MBE), without requiring an external shallow impurity doping source. We shall first summarize our present understanding of the mechanism responsible for the n-type conductivity of LT-InP, which is attributed to the auto-ionization of P In antisites via the (0/+) level resonant with the conduction band. The P In antisites are shown to exhibit properties meeting basic requirements for a dopant: (1) known chemical identification; (2) known electronic structure; (3) a control of doping concentration by varying growth temperature. We shall also provide a review of recent results from defect engineering, by utilizing the intrinsic n-type dopants of P In antisites for modulation doping in InP-based heterostructures. Important issues such as doping efficiency, electron mobility, thermal stability, etc., will be addressed, in a close comparison with the extrinsically doping method by shallow dopants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.