Abstract

The linear problem associated with the self-dual Yang-Mills equations is covariant with respect to Darboux and binary Darboux transformations of almost classical type. This technique is used to construct solutions of the problem in the form of Wronskian-like and Gramm-like determinants. The self-dual conditions can be properly realized for only the latter type of solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.