Abstract

Resolved-rate and resolved-acceleration controllers have been proposed for manipulators whose trajectories are determined by real-time sensory feedback. For redundant manipulators, these controllers have been generalized using the pseudoinverse of the manipulator Jacobian. However, near singular configurations, these controllers fail in that they require infeasibly large joint speeds. A damped least-squares reformation of the problem gives approximate inverse kinematic solutions that are free of singularities. Away from singularities the new controllers closely approximate their conventional counterparts; near singular configurations the new controllers remain well-behaved, although the rate of convergence decreases. This paper defines the new controllers and proves their stability. Some aspects of the behavior of the new resolved-rate controller are illustrated in simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.