Abstract

A two-dimensional numerical solution for pulsed laser transformation hardening is developed using the finite difference method (FDM). The FDM has been developed using Crank-Nicolson scheme which solved by using alternating-direction implicit method. If this present model was compared to the analytical solution, then the Crank-Nicolson scheme showed better results in terms of accuracy, consistency, stability, convergence, and performance than to the explicit scheme. The longer heating duration, higher laser beam intensity, and greater number of pulse had influences on increasing the maximum temperature. The repetitive heating had influences on extending the heat duration and increasing the initial temperature of domain. The shorter cooling duration in repetitive pulse produced higher maximum temperature. The thinner material’s thickness increased the cooling rate, which finally increased the possibility of austenite to transform into martensite phase. In addition, it was also found that the higher maximum temperature always reduced the cooling rate value when temperature cools down toward to the starting temperature of martensite formation. It reduced the possibility of martensite formation. It was also seen that the heat was conducted more effective to the axial direction than to the radial direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.