Abstract

The second most abundant biological macromolecule, next to cellulose is Chitosan. It is a versatile naturally occurring hydrophilic polysaccharide, derived as a deacetylated form of chitin. Due to its biocompatibility, biodegradability and antimicrobial activity, it has become a significant area of research towards drug delivery system, plant growth promotion, anti-pathogenic potentiality, seed priming and in plant defense mechanism. Various synthetic strategies have been established in recent years that couples different metals with chitosan nanoparticles. Metals like silver, copper, zinc, iron and nickel are highly compatible to form chitosan metallic nanoparticles and are proved to be non-toxic to the agricultural plant system. This review highlights the mode of action of nanochitosan on Gram-positive and Gram-negative bacteria in a distinguished manner as well as its action on fungi. A prime focus has been given on the skeletal framework of the metallic nanochitosan particles. Our study also projects the antimicrobial mechanism of chitosan based on its physiochemical properties, environmental factors and the type of organism on which it acts. Moreover, the mechanism for stimulation of plant immunity by metallic nanochitosan has also been reviewed. Our study relies on the conclusion that chitosan metallic nanoparticles showed enhanced anti-pathogenic and plant growth promoting activity in comparison to bulk chitosan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.