Abstract

With the increasing pressure of population, the energy demand is growing explosively. By 2050, it is expected that the world population may reach to about 9 billion which may result in the increase of energy requirement to about 12.5 trillion watts. Due to increasing pressures of population, industries and technology, concerns to find possibilities to cope with increasing demand of energy resources, arise. Although the renewable energy resources including fossil fuels, wind, water and solar energy have been used for a long time to fulfill the energy requirements, but they need efficient conversions and storage techniques and are responsible for causing environmental pollution due to greenhouse gases as well. It is thus noteworthy to develop methods for the generation and storage of renewable energy devices that can replace the conventional energy resources to meet the requirement of energy consumption. Due to high energy demands, the sustainable energy storage devices have remained the subject of interest for scientists in the history, however, the traditional methods are not efficient enough to fulfill the energy requirements. In the present era, among other variety of advanced treatments, nano-sciences have attracted the attention of the scientists. While talking about nano-science, one cannot move on without admiring the extraordinary features of carbon nanotubes (CNTs) and other carbon based materials. CNTs are on the cutting edge of nano science research and finding enormous applications in energy storage devices. Excellent adsorption capabilities, high surface area, better electrical conductivity, high mechanical strength, corrosion resistance, high aspect ratio and good chemical and physical properties of CNTs have grabbed tremendous attention worldwide. Their charge transfer properties make them favorable for energy conversion applications. The limitation to the laboratory research on CNTs for energy storage techniques due to low specific capacitance and limited electrochemical performance can be overcome by surface functionalization using surface functional groups that can enhance their electrical and dispersion properties. In this chapter, ways CNTs employed to boost the abilities of the existing material used to store and transfer of energy have been discussed critically. Moreover, how anisotropic properties of CNTs play important role in increasing the energy storage capabilities of functional materials. It will also be discussed how various kinds of materials can be combined along CNTs to get better results.

Highlights

  • With the increasing pressure of population, the energy demand is growing explosively

  • carbon nanotubes (CNTs) are on the cutting edge of nano science research and finding enormous applications in energy storage devices

  • An anode can be made of pure CNTs or composite metals, which acts as the negative electrode of the LIB during charging while cathode is composed of Li metal oxides or transition metals oxides that acts as the positive electrode of LIB in discharging

Read more

Summary

Introduction

With the increasing pressure of population, the energy demand is growing explosively. By 2050, it is expected that the world population may reach to about 9 billion which may result in the increase of energy requirement to about 12.5 trillion watts. Due to increasing pressures of population, industries and technology, concerns to find possibilities to cope with increasing demand of energy resources arises. We want to grab attention of the readers towards the applications of CNTs in energy storage devices. One is the energy storage via faradic process while the other one is a non-faradic process. In the non-faradic devices, electricity is stored in electrostatic way while the faradic devices store energy electrochemically by redox reactions of active reagents. Pseudocapacitors and batteries are the examples of faradic devices while supercapacitors are the non-faradic energy storage devices

Basic principle
Battery
Capacitor
CNTs for energy storage devices
Li-Ion batteries
CNTs based anode
CNTs based cathode
Super capacitors
Electrode material for supercapacitors
Bare CNT electrode
Polymer\CNT composites electrodes
Metal oxide\CNT composites electrodes
CNTs as flexible and separate electrodes
CNT paper for energy storage
CNT fibers
CNT and polymers composites
Flexible energy storage devices
Flexible supercapaitors
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.