Abstract
To make clear the mechanism of the visual movement is important in the visual system. The prominent feature is the nonlinear characteristics as the squaring and rectification functions, which are observed in the retinal and visual cortex networks. Conventional model for motion processing in cortex, is the use of symmetric quadrature functions with Gabor filters. This paper proposes a new motion sensing processing model in the asymmetric networks. To make clear the behavior of the asymmetric nonlinear network, white noise analysis and Wiener kernels are applied. It is shown that the biological asymmetric network with nonlinearities is effective and general for generating the directional movement from the network computations. The qualitative analysis is performed between the asymmetrical network and the conventional quadrature model. The analyses of the asymmetric neural networks are applied to the V1 and MT neural networks model of in the cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.