Abstract
Artificial intelligence (AI) renders cutting-edge applications in diverse sectors of society. Due to substantial progress in high-performance computing, the development of superior algorithms, and the accumulation of huge biological and chemical data, computer-assisted drug design technology is playing a key role in drug discovery with its advantages of high efficiency, fast speed, and low cost. Over recent years, due to continuous progress in machine learning (ML) algorithms, AI has been extensively employed in various drug discovery stages. Very recently, drug design and discovery have entered the big data era. ML algorithms have progressively developed into a deep learning technique with potent generalization capability and more effectual big data handling, which further promotes the integration of AI technology and computer-assisted drug discovery technology, hence accelerating the design and discovery of the newest drugs. This review mainly summarizes the application progression of AI technology in the drug discovery process, and explores and compares its advantages over conventional methods. The challenges and limitations of AI in drug design and discovery have also been discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.