Abstract
From the growing popularity of Android smart devices, and especially with the recent advances brought on by the COVID-19 pandemic on digital adoption and transformation, the importance of protecting these devices has grown, as they carry very sensitive data. Malicious attacks are targeting Android since it is open source and has the highest adoption rate among mobile platforms. Botnet attacks are one of the most often forgotten types of attacks. In addition, there is a lack of review papers that can clarify the state of knowledge and indicate research gaps in detecting android botnets. Therefore, in this paper, we conduct a literature review to highlight the contributions of several studies in the domain of Android Botnet detection. This study attempts to provide a comprehensive overview of the deployed AI apps for future academics interested in performing Android Botnet Detection studies. We focused on the applications of artificial intelligence and its two prominent subdomains, machine learning (ML) and deep learning (DL) techniques. The study presents available Android Botnet datasets suitable for detection using ML and DL algorithms. Moreover, this study provides an overview of the methodologies and tools utilized in APK analysis. The paper also serves as a comprehensive taxonomy of Android Botnet detection methods and highlights a number of challenges encountered while analyzing Android Botnet detection techniques. The research gaps indicated an absence of hybrid analysis research in the area, as well as a lack of an up-to-date dataset and a time-series dataset. The findings of this paper show valuable prospective directions for future research and development opportunities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.